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Fig. 4. Autocorrelation function: top,  broad-band  signal  and  sinusoid;  bottom,  autocorrelation 
function  of broad-band  signal  after  sinusoid  has  been  removed  by a nonlinearity. 

tionship was defined  to measure the  effectiveness of the IN1 
concept.  Two examples  were given to demonstrate  the  method. 
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O n  the Finite Maximum Entropy 
Extrapolation 
MElR FEDER AND EHUD  WEINSTEIN 

In many  signal  processing  problems such as filtering, system 
identification,  and spectral  analysis it is desired to extrapolate a 
measured set of correlation lags of  the  observed time series so as to 
increase  the resolution capabilities. One possible  approach is to use 
the  maximum  entropy  method (MEM). According to this  criterion, 
one extrapolates  the limited available  correlation data into  the 
unknown region  of the  time  domain so that  the  entropy  of  the 
underlying  random process is maximized. In this way one ensures 
that  the  fewest assumptions  have been made concerning  the un- 
measured  data. 

The problem we are addressing in this  letter may be  stated as 
follows:  Given partial  knowledge  of  the  first N correlation lags, find 
an  extrapolation  by some arbitrary  number M using  the  maximum 
entropy  principle. Assuming that  the  correlation sequence corre- 
sponds to a  weakly  stationary  discrete-time Gaussian random  pro- 
cess, the  entropy  of  the  corresponding ( N  + M )  segment of  the 
time series is given by [ I ]  

H=- + log (2we)  + - log (det R N c M )  1 
2 2 (1 1 

where  det R N + M  is the  determinant of RN+M.  RN” is the ( N  + 
M )  X ( N  + M )  matrix whose ( i ,  j )  element is given by 

/ t  is  shown  that an autoregressive (AR) extrapolation of a given  and Q is the  correlation value at the  Cth time lag. 
set of correlation lags by any finite  number  maximizes  the  entropy Since the  first  term in (I) is  a constant  and  the  logarithmic 
(;.e., the  determinant of the  correlation  matrix) of the correspond function is monotonic, the maximum Problem Can be 
ing segment of the  time series. stated as follows:  Given  the first N correlation lags ( r O , r l ; .  . , T ~ - ~ ) ,  

find an extension ( r N ,  rN+l,’. ., rN+M- l )  such that 
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In [2 ]  i t  has been  shown  that  the  solution to the  one-dimensional 
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i s  given  by Discussion 

In a  more  general  context [4], it has been  shown  that  the inverse 
of  the  extended  matrix, RN+M in our case, that maximizes the 
determinant  must assume the general form 

N-1 

rN = aprN-; 
;= 1 

where 

are the  coefficients  of  the  prediction  filter  of  order N obtained 
from 

Using  the AR extrapolation in (5) recursively to generate higher 
order  correlation lags corresponds to successive one-step  maximiza- 
tions (i.e., one  first  maximizes  det RN+’ with  respec  to r,, then 
substitutes  the  resulting rN into RN+2 and  maximizes  detRN+’ 
with respect to rN+’, etc.). In general, maximizing  the  entropy at 
each step i s  different  from maximizing  det RN+M with respect to all 
M variables  at.once.  However, in this case, both procedures are 
equivalent as stated  by  the following theorem. 

Theorem: 

The solution  to (3) is obtained  using  the  extrapolation  formula 

N-1 

r k =  aprk-,, k = N , N + I ; . . , ( N + M - l )  (7) 
i-I 

for any given M 2 1.  
Proof: We first observe that 

det RN+M M 

-= 
det RN k-1 det RN+k-’ n det RN+k = n ‘N+k .  (8) 

k-1 

Since det RN depends  only on the  first N correlation lags, maxi- 
mizing  det RN+M/det RN with respect to rN, rN+, , - .  ., rN+M-l will 
yield  the desired  result. In this  setting it is sufficient to  find an 
extrapolation to the M unknown correlation lags which simulta- 
neously  maximizes all the terms PN+k in the  product, i.e., it is 
sufficient to solve 

Max P N + k r  k = 1 , 2 ; . . , M .  (9) 
( r N I r N + l r . . . , r N + k - - l )  

In [3] it has been  shown  that PN+k is  the minimum attainable 
mean square error (m.5.e.) in the  prediction  filter of  order ( N  + k). 
Obviously, PN+k 6 PN for all positive k and any combination  of 
rN,rN+l,.. ., rN+k-l-otherwise the prediction  filter  of order N 
could be  used to achieve a smaller m.s.e.‘ If, however,  the M 
unknown correlation lags  are generated  using (3, the  indicated 
upper bound is  reached  simultaneously  for  all k, i.e., PN+k = PN, 
k 1 .  This happens because in that case the  prediction  filter  of 
order ( N  + k )  coincides with the  prediction  filter  of  order N, i.e., 

The AR extrapolation (3, therefore, is the  solution to (9) and  the 
theorem is proved. 

solving the  Yule-Walker  equations. 

case and exploiting the AR relation of (7). 

’This can also be observed from the Levinson’s recursion  formulas  for 

2Equation (10) is  immediately  obtained by writing (6) for  the ( N  + k) 

M 

Equation (11) reads that (RN+M);’ = 0 for Ii - jl  > N. A matrix of 
this  general form is called a band  matrix. To show  that  the above 
theorem is consistent with that result, we  first observe that RN+M 
can  always  be  diagonalized  by [5 ]  

AT = 

If RN+M is extended  using  the AR extrapolation  formula (7), then 
the  second line  in (IO) reads that a r + k  = 0 whenever i N. In that 
case, (13) assumes the  form 

M 

where  the  notation (0) indicates  that all the  elements below  the 
main diagonal are  zero. Substituting (16) into (15) one  immediately 
obtains 
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Book Reviews 

The following reviews were selected  from those recently pub 
lished in various IEEE TRAN5ACTlONS and Croup/Society  Magazines 
and Newsletters. They  are reprinted here to make  them  conveni- 
ently available to the  many readers who otherwise might not have 
ready access to them. Each review is followed  by  an  identification 
o f  its  original source. 

Optische  Nachrichtentechnik-G.  Crau. (Berlin,  Germany: 
Springer-Verlag, 1981,  144 pp.) Reviewed by H. Melhior, Swiss 
Federal lnstitute o f  Technology, Zbrich,  Switzerland. 

This  book,  titled  Optical Communication, is written for  electrical 
engineers  and  engineering  students and gives  an introduction  into 
the  field of  fiber  optical  communication. The book deals with 
optical fibers,  semiconductor  light sources, photodetectors,  and 
optical  communication links; it represents the status of this fast- 
moving  field  around 1983. 

Starting with the  material  properties  of  silica,  the wave propa- 
gation,  attenuation,  and  dispersion  of  monomode  and  multimode 
fibers are treated in  great mathematical detail, followed by a few 
brief  remarks  about  the  fabrication  of fibers.  The  chapters on  light 
sources describe  light-emission  diodes and semiconductor lasers 
and  cover  typical  construction types and  a  number of their  electro- 
optical  characteristics.  Photodiodes  and avalanche photodiodes are 
presented, as well as noise  and  sensitivity  calculations of entire 
receivers  for  analog  and  digital signals.  Fiber  splices and  couplers 
are mentioned. A brief  chapter on applications  concludes  the  book. 

This book is undoubtedly  one  of  the best introductions to the 
field  of fiber  optical  communications available in the  German 
language. It emphasizes mathematical  calculations. In this reviewer’s 
opinion,  it takes  some effort by the reader to  work  out the physical 
principles  underlying  the various mathematical  treatments  and to 
extract  the  data  needed  for  practical  applications.  Nonetheless, it i s  

a  careful  introduction for  students as well as developers  of  fiber- 
optical  communication systems. 

June 1983. 
Reprinted from I€€€ Circuits andSysterns Magazine, vol. 5, no. 2, p. 13, 

Multivariable System Theory and Design-R. V. Patel and N. Munro. 
(Oxford, England:  Pergamon,  1982,  374 pp.)  Reviewed by George C. 
Verghese, Department o f  Electrical  Engineering and Computer Sci- 
ence, Massachusetts lnstitute o f  Technology,  Cambridge, MA 
021 39. 

This book deals with methods  of analysis and  control  design  for 
multi-input-output, linear,  time-invariant  dynamical systems,  The 
area continues to be an active  and  important  one in research and 
applications. The authors’  primary  intent, as stated in the preface, is 
to present  a  comprehensive  and  up-to-date  treatment  of a selection 
of  recent  developments in this area, in a textbook  suitable  for 
graduate control engineering  students. As prerequisites  for  studying 
the  book,  they  list an introductory course in the state-space ap- 
proach to dynamical systems,  basic undergraduate courses in  linear 
algebra  and  complex variables, and  preferably  a course in classical 
control  theory as well  (though the  latter is claimed  not to be 
necessary for  understanding  the  material in the  book);  the  mathe- 
matical  level of the  book is intentionally  kept  fairly basic. It is also 
intended  to  be useful  for research and  reference purposes. 

The following  listing  of chapter headings and  lengths will convey 
some  idea of the  contents  and  level  of  this  book. following an 
introductory chapter (chap. 1, 18  pp.) that consists of a brief 
historical  perspective on the area (with 161 references), the book 
contains  chapters titled:  “Multivariable System Representations” 
(chap. 2, 18 pp.); “Controllability,  Observability,  and  Canonical 
forms” (chap. 3,  34 pp.); “Poles and Zeros of  Multivariable Systems” 
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